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Objective

* Develop a method for using the existing physical and chemical data
collected in the Delta to estimate biogeochemical rates and evaluate
how rates change under different conditions.

* The proposed approach leverages existing nutrient and water velocity
time series, and existing field data collections.

* This work is intended as a proof-of-concept /feasibility study.



Approach

e Quantify the difference between the spatial distribution in nutrient
concentrations that may be “expected” if nutrients were transported
conservatively purely by advection (by the tidal currents), and the
actual measured spatial distribution of nutrients.

e Estimated rates are the difference between the observed and
expected concentration divided by the elapsed time.

* Permits evaluation of rates in complex tidal systems.
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FIGURE 11. INSTANTANEOUS (GREY) AND TIDALLY AVERAGED (BLACK) FLOW OF THE SACRAMENTO RIVER AT FREEPORT (FPT) PLOTTED WITH NITRATE
CONCENTRATIONS MEASURED AT THE CONTINUOUS MONITORING STATIONS LOCATED AT FPT (YELLOW) AND WALNUT GROVE (WGA, GREEN). FROM O’DONNELL, 2014.



Point to point

* Works if dispersion is low enough
and rates are high enough



Slack to Slack

e

* Works if rates are large compared to tidal time scales



Constituent Tracker

Estimating Spatial Distributions based on a
dense network of WQ/Flow stations and
simplified physics

Bloom Tracker
(Chl-a, Nutrients)

Turbidity Tracker
Salinity Tracker
etc., etc.



2D Model results: Courtesy of RMA



Multistep Process to generate spatial maps of WQ
constituents:

(1) Linear interpolation between stations to a
common point in TIME (Done: Bay/Delta Live)

(2) Linear interpolation to a common point in TIDE
[slack after flood, slack after ebb]

(3) Assume pure advection —then correct
for timing (advection) errors and dispersion using
data assimilation



Step (3)

Step 2: Scaling Analysis (assume pure advection then correct)

Better define gradients — common point in tide (slack water plots)

Use 1D adv-dispersion eq. - only has to apply for % tide cycle ~6 hours)

ocC ocC
= (>—+D— HS)

Step (1) assume pure advection (Eulerian)

OC OC
— ~ —U(e)—
ot ()Gx
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First order Euler/Lagrange transformation:
Wave Equation
(based on the simplified (1D) equations of motion)
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77 = sea level variations referenced to the mean tide
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Co = ./ gho g = gravity

A =Wave length of a particular partial tide

n = Manning’s friction coefficient
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Solutions take the form:

u=U(X,,t)e”"™ cos(—xx)

A, K = can be estimated using velocity data from adjacent stations

After Officer, 19xx
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Euler-Lagrange Comparisonof Velocies A

ong a Tidal Excursion Trajectory near Decker Island
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Often S is small compared to v©< and P
—s0 to get at S we need to remove
Variability associated with —u(e)% and p
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Generally in the Delta
Advection >>Dispersion>>Source/Sinks
o°c

OoC
—u(e)—>D—>>S
()8x Ox?

So we’ve taken care of advection
What do we do about dispersion

0°C
Dy 277

First off because the Delta is made up of canals D is small



Bathymetric variability causes velocity shear -> causes
dispersion — but we have little bathy variability in Delta
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Courtesy of RMA



If we use a conservative tracer
Such as conductivity: Source/Sinks (S) =0

We know advection (from above) so we can solve for D

oc  oc. 0°c
D =[u(e — /
[ ()ax 8t] OX?

Assume D for conservative constituent
IS the same for non-conservative constituent
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Infer spatial structure by affiliating distance from station (advection)
with constituent measurements
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A sequence of “Slack Water Plots” reveals temporal evolution
of EC spatial structure within a tidal excursion of sampling location

Decker Island (DEC)
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Spring/Neap Variability in Salinity Intrusion
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Step 3: Use Overlap Region to correct for errors in
spatial prediction from adjacent stations

Movement of Along Channel Spatial Structure
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Arrows represent tidal excursions - length of arrow represents distance travelled, arrow indicates direction of movement
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Questions?
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Final Step

String all the slack after the “big” ebbs together to
get the net movements of the constituent
distributions when they are furthest into the bay.

String all the slack after the “big” floods together

to get the net movements of the constituent
distributions when they are furthest into the delta.
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Three ways to do this

* Point to point
* Slack to slack at a given point

* Slack-tide surface compared to actual measured surface
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FIGURE 9 TIME SERIES OF NITRATE (NO3) CONCENTRATION DATA COLLECTED AT BROWN’S ISLAND IN 2005 AND 2006 PLOTTED WITH STAGE (DASHED LINE), PRECIPITATION (GREY
BARS), AND GRAB SAMPLE CALIBRATION DATA (RED TRIANGLES). THREE DIFFERENT DEPLOYMENT PERIODS ARE SHOWN: (A ) APRIL/MAY 2005, (B ) OCTOBER 2005, (C )
JANUARY/FEBRUARY 2006.




Slack water surface

.

Slack 1

Slack 2 pa— =, >

 Works for slower rates



FIGURE 14 MAP OF DATA
GENERATED BY AN IN SITU
FLUOROMETER DESIGNED TO
DETECT DISSOLVED ORGANIC
MATTER (FDOM) COLLECTED
ALONG A SECTION OF THE
SACRAMENTO RIVER SHOWING
THE ABILITY TO MAP THE
PRESENCE (BLUE) AND
ABSENCE (RED) OF
WASTEWATER EFFLUENT.



Need to sort out the physics

» Advection, dispersion and all that sort of crap
* Equations and graphs
* Animations and arm waving



Step (1)
Step 1: Linear Interpolation -constant point in time
(We already have this! Bay/Delta Live)

(a)Tidal timescale: spatial maps based on linear
Interpolation between stations every 15 minutes,
hourly, etc.

Good for big picture, but no gradients between
stations — linear interpolation
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Linearly Interpolated Turbidity Field —Constant Point in Time: Courtesy of 34North
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Step (2)
Step 2: Linear Interpolation -constant point in tide

(b) Net (or residual timescale):

Linearly interpolate to a constant point in tide (say
slack after flood and ebb each day) — string
together to get the big picture movements of
constituent fielo

Good for big picture, but no gradients between
stations — linear interpolation

34



